If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3q^2-4q=2q^2-8q+21
We move all terms to the left:
3q^2-4q-(2q^2-8q+21)=0
We get rid of parentheses
3q^2-2q^2-4q+8q-21=0
We add all the numbers together, and all the variables
q^2+4q-21=0
a = 1; b = 4; c = -21;
Δ = b2-4ac
Δ = 42-4·1·(-21)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-10}{2*1}=\frac{-14}{2} =-7 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+10}{2*1}=\frac{6}{2} =3 $
| 1x+20=4x+5 | | 2+2(7w-2)=-5(2w-2)+6 | | 7(6-4n)=-18+2n | | -2(-2w+4)-6w=4(w-4)-6 | | 1x+28=-3x+60 | | (3-1)(1+x)(-2)=2x | | 1x+1=5x+5 | | 7c−4c+c−c=12 | | | | -4(u+3)=-3(4u-1)+2u | | c2+11c+30=0 | | 1x-1=2x+1 | | 16^(3x)=8^x+6) | | 11/7b=4 | | y^2+11y-196=0 | | 7x+44=9(x+4) | | 7(w+3)=2w+26 | | 3x+1.4=2.9 | | 0=0.03x(x-100) | | 2w-2=4(w+4) | | 1x-2=3x+12 | | 25/12=x/12 | | 2x-2=1x+7 | | 26=7(v+6)-5v | | 15+x/3=12 | | -34=6(y-8)-4y | | 1x+18=5x+6 | | | | 4=3w+4(w+8) | | 216+43.2=x | | 5x+19=1x+7 | | 4/13=2b/13=6b/26 |